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LETTER TO THE EDITOR

Log–normal distribution of level curvatures in the localized
regime: analytical verification

Michail Titov†, Daniel Braun‡ and Yan V Fyodorov†‡
† Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
‡ Fachbereich Physik, Universität-GH Essen, D-45117 Essen, Germany

Abstract. We study numerically and analytically the moments of the dimensionless level
curvature for one-dimensional disordered rings of the circumferenceL pierced by a magnetic
flux φ. The negative moments of the curvature distribution can be evaluated analytically in
the extreme localization limit. The ensuing small curvature asymptotics of the corresponding
distribution has a ‘log–normal’ behaviour. Numerically studied positive moments show
differences from other log–normally distributed quantities.

Recently there has been a considerable interest in various statistical characteristics of spectra
of disordered and chaotic quantum systems, see e.g. [1]. One particularly interesting issue
is the so-called ‘level response statistics’ characterizing the sensitivity of individual energy
levelsEn(λ) with respect to perturbation in an external parameterλ. The role of such a
parameter can be played by, for example, an external electric or magnetic field, the strength
and form of the potential, or any other appropriate parameter of different nature on which
the system Hamiltonian is dependent. A convenient quantitative measure of level sensitivity
is provided by a set of first and second derivatives∂En(λ)/∂λ and∂2En(λ)/∂λ

2, known as
‘level velocities’ and ‘level curvatures’, respectively.

The statistics of these quantities are mostly studied for the systems with completely
‘ergodic’ eigenfunctions covering randomly, but uniformly, all the available phase space
and showing no specific internal structure. For systems of this type most of their statistical
characteristics are known to be universal, i.e. independent on particular microscopic details,
and adequately described by ensembles of large random matrices of particular global
symmetry [1, 2]. The same universality class comprises also weakly-disordered (metallic)
systems as long as effects of Anderson localization are negligible [1–3].

The form of the level curvature distribution typical for random matrices of various
symmetry classes was guessed by Zakrzewski and Delande [4] on the basis of the numerical
data. The analytical derivation of the Zakrzewski–Delande distribution is due to von Oppen
[5] and Fyodorov and Sommers [6].

The effects of eigenfunction localization are expected to modify the level curvature
statistics drastically. In contrast to the ‘random matrix’ regime it is obvious that the level
response should be less universal depending on the nature of perturbation. Such a non-
universality manifests itself already in the form of perturbative corrections to the curvature
distribution due to localization effects [7].

Actually, the sensitivity of the energy spectrum to a change in boundary conditions was
suggested long ago by Thouless as a measure of system conductance [8]. To quantify this

0305-4470/97/100339+07$19.50c© 1997 IOP Publishing Ltd L339



L340 Letter to the Editor

statement let us consider a one-dimensional sample closed to form a ring of circumference
2L encircling the Aharonov–Bohm fluxφ (measured in units of the flux quantaφ0 = ch̄/e).
The wavefunction in such geometry acquires the phase when going around the flux:

9(x + L) = eiφ9(x − L). (1)

The curvature is given by second-order perturbation theory

Kn = ∂2En(φ)

∂φ2

∣∣∣∣
φ=0

∝
∑
m6=n

|〈m|P̂x |n〉|2
Em(0)− En(0) (2)

up to a constant shift. Here|m〉 and Em(0) are eigenvectors and eigenvalues of the
Hamiltonian at zero flux andP̂x is the momentum operator. Using a similarity of this
expression to the conductance given by the Kubo formula, Thouless argued that the ‘typical’
dimensionless level curvatureK/1 (with K measured, e.g., by the widths of the curvature
distribution) is proportional to the dimensionless conductance of the sample.

The original qualitative arguments of Thouless seemed to be controversial and also did
not take into account strong correlations between energy levels of a disordered system. The
curvature–conductance relation gave rise to a lot of discussion and was even claimed to be
incorrect [9]. The problem has recently been reconsidered in much detail [10–12], the results
favouring validity of the Thouless idea in the metallic regime. For a disordered system
in a good metallic regime, the Thouless relation, including the universal proportionality
coefficient, was derived explicitly [13] in the course of analytical verification of the
Zakrzewski–Delande distribution. However, the perturbative localization corrections to
both quantities are different [7].

As to the issue of the level curvatures in systems with strongly localized eigenstates, our
present understanding is based mainly on the results of numerical simulations [12, 14–16]. It
turns out that the curvature distribution is close to log–normal for strong enough localization
and has quite a non-trivial form in the vicinity of the Anderson transition [15]. Qualitative
origin of the log–normal distribution can be inferred from equation (2) as suggested in [15].
Indeed, it is natural to assume that the absolute value of the curvature|K| is proportional
to the product of amplitudes of a typical wavefunction at opposite edges±L of the sample:
|K| ∝ |9(−L)9(L)| ∼ exp−(constant× L/ξ). The log–normal distribution follows if one
assumes that the inverse localization lengthξ−1 shows Gaussian eigenstate-to-eigenstate
fluctuations.

However attractive and transparent this simple argumentation, a close inspection shows
that it should be taken with caution. To this end let us recall that the distribution of
the quantityv = |9(−L)9(L)| for (quasi) one-dimensional disordered samples can be
calculated analytically [17]. It indeed has a log–normal form forL� ξ , but all the positive
moments〈vn〉 are dominated by rare events in such a way that〈vn〉 ∝ exp−cL/ξ , where
the constantc is independentof the indexn.

To check if this property is shared by the level curvatures, we performed numerical
simulations of the tight-binding Anderson model in one dimension. The curvatures were
calculated exactly from both eigenvalues and eigenvectors (see figure 1) and between 100
and 500 disorder realizations were used. We plot the numerical results for the logarithm
of first, second and third moments of the curvature distribution againstL, see figure 1.
The moments indeed decay roughly exponentially with system size, but the typical decay
length decreases for higher moments in contrast to the behaviour typical for the quantity
|9(−L)9(L)|.

The second fact to be mentioned is that earlier numerical investigations discovered
a peculiar feature of the curvature distribution: the log–normal law is quite a good fit
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Figure 1. First, second and third moments of the curvature distribution as functions of the
system size as obtained from numerical simulations of the tight-binding Anderson model in one
dimension. The disorder parameterw (width of the box distribution of the diagonal matrix
elements) isw = 2. Typical error bars are comparable to the remaining fluctuations on top of
the exponential decay.

separately for the domain of curvatures larger and smaller than the most probable value
〈ln |K|〉 ∼ L/ξ , but the parameters of the fit are slightly different for the two domains.
At the same time, the statistics of the correlation functionv = |9(−L)9(L)| are truly
log–normal everywhere [17].

These observations provide us with a motivation to consider the problem of the level
curvature distribution in a strongly localized regime on a more sound basis without invoking
any additional assumptions.

In the present paper we treat analytically the problem of the distribution of the absolute
value of the level curvatures:

P(K) = 1
〈∑

n

δ(E − En(0))δ(K − |Kn|)
〉

(3)

for a one-channel ring characterized by the Schrödinger equation(
− d2

dx2
+ U(x)− E

)
9(x) = 0 (4)

with the boundary condition equation (1). HereU(x) is a white noise potential
〈U(x)U(x ′)〉 = Dδ(x − x ′) which is considered to be weak,l = 4k2/D � k−1, with
k being the Fermi momentum related to the energyE as k2 = E and l standing for the
mean free path. For the one-channel ring the mean free path is of the same order as
the localization length. As we shall see, the negative moments of the curvature distribution
equation (3) can be found explicitly for rings withL� l, i.e. in a strong localization regime.
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This allows us to verify analytically the log–normal nature of the ensuing distribution at
small curvatures.

To address the problem of level curvatures in the most direct way we follow the
method of Dorokhov [18] and Kolokolov [19] who calculated the absolute value of
the persistent currentjn = |∂En/∂φ|. To this end, let us associate with any point

x,−L 6 x 6 L, within the sample a vectorV (x) =
(
v+(x)
v−(x)

)
with components

v±(x) = ±(d9/dx ± ik9) exp(∓ikx) and consider a 2× 2 transfer matrixT relating the
valueV (x) to the ‘initial’ valueV (−L) in the following way:V (x) = T̂ (x,−L)V (−L).
Due to current conservation the transfer matrix can be parametrized as

T̂ (x,−L) =
(

cosh0 eiα sinh0 eiβ

sinh0 e−iβ cosh0 e−iα

)
. (5)

Here α(x,E), β(x,E) and 0(x,E) are real functions to be determined. The periodic
boundary condition equation (1) can be written in terms of the transfer matrixT̂ =
T̂ (L,−L) as det(T̂ e2(ikLσ̂z)−eiφ) = 0, whereσ̂z stands for the Pauli matrix. It is convenient
to rewrite this condition in terms of thêT -matrix elements as

f (Em,L) = cosφ f (E, x) = cosh0 cos(α + 2kx). (6)

This equation determines the set of energy levelsEm(φ). The following identities can
be immediately inferred from this fact:∑

n

δ(E − En(φ)) = δ(f (E,L)− cosφ)|df/dE| (7)∣∣∣∣∂2En

∂φ2
(φ = 0)

∣∣∣∣ = ∣∣∣∣ ∂f∂E (E = En)
∣∣∣∣−1

. (8)

As a result one can write down the moments of the distribution equation (3) in the
following form:

Mn =
∫ ∞

0
KnP(K) = 1

1n−1

〈
δ(f − 1)

∣∣∣∣ ∂f∂E
∣∣∣∣−n+1 〉

. (9)

When performing the disorder averaging it is convenient to get rid of theδ-functions in
(9) by averaging the corresponding expression over the ensemble of samples with slightly
fluctuating sample lengthsL ± δL; k−1 δL � min(l, L) [19]. When doing this we take
into account the fact that the functions0(x,E) and α(x,E) change very slowly on the
scaleδx ∼ k−1, i.e. (d0/dx, dα/dx) � k. As a consequence there is typically only one
solution of equation (6) in the intervalδx = π/k. We also found that the quantities dα/dE
andLk−1 are of the lower order O(1/(Lk)) when compared with d0/dE and can be safely
neglected. This gives the possibility of rewriting the expression (9) in the form

Mn ≈ 1

2π1n−1

〈
1

| sinh0|
∣∣∣∣d0

dE
tanh0

∣∣∣∣−n+1 〉
. (10)

The disorder averaging in expressions of such a type can be performed by employing
the functional integral method suggested by Kolokolov [19]. For accomplishing such a
calculation it is important to express the quantity to be averaged in terms of elements of
the matricesT ≡ T (L,−L) and dT /dE without involving complex conjugation. To find
such a representation let us consider the auxiliary quantity

A = (0, 1) T s−s+T
(

0
1

)
(11)
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where s± are familiar lowering and raising operators for the spin1
2. Taking

the parametrization equation (5) into account we find thatA = cosh20 e−2iα and
correspondingly

dA/dE

2A
= d0

dE
tanh0 − i

dα

dE
= d0

dE
tanh0

(
1+O

(
1

Lk

))
. (12)

The right-hand side of this expression is just the important part of the combination appearing
in expression (10) under the sign of averaging.

On the other hand, the same quantity(dA/dE)/2A can be written in terms of the matrix
dT /dE when differentiating equation (11) with respect toE.

The matrix dT /dE itself can be determined from the following exact relation between
the solution9(x) of the initial Schr̈odinger equation and its derivative with respect to the
energy8(x) = d9(x)/dE,

8(x) = 9(x)
[
c1−

∫ x

−L

dy

92(y)

(
c0+

∫ y

−L
dy19

2(y1)

)]
(13)

wherec0 = (8 d9/dx −9 d8/dx)|x=−L andc1 = 8(−L)/9(−L).
We can write the relation

dT
dE
V (−L) = F (L)− T F (−L) (14)

whereF (x) = dV (x)/dE. The componentsf± of the vectorF are represented as integral
functionals of the fieldsv±(x), the latter fields having boundary valuesv±(−L) at the point
x = −L.

Combining all these facts together, one can find the appropriate representation for the
quantity(dA/dE)/2A. Skipping the cumbersome intermediate steps in favour of presenting
the final expression, we find finally

dA/dE

2A
'
∫ L

−L

dy

v+(y)v−(y)

∫ y

−L
v+(y1)v−(y1) dy1 (15)

where the componentsv±(x) of the fieldV (x) are given byV (x) = T (x,−L)
(

0
1

)
. In

expression (15) we only kept the leading terms with respect to 1/Lk and also omitted all
terms containing the fast oscillating factors e±2ikL.

The following comment is appropriate here. Generally speaking, the functionsv±(x)
are random and can take any complex values. However, they are not independent of
each other and can be chosen to satisfy the constraintv+(x) = v∗−(x). When using the
Kolokolov method of averaging the random fields,v+(x) andv−(x) should be analytically
continued on the surface determined by this constraint to provide the convergence of the
corresponding path integral. Apart from this fact, in our case one can use the same
constraint to argue that dα/dE is small in comparison with tanh0 d0/dE by the factor
1/Lk which we intensively used to simplify the expressions given above, for example
equation (12).

Equation (10) combined with (12)–(15) provides a representation which is used as a
starting point for employing the Kolokolov approach. Indeed, we expressed the moments
Mn in terms of the elements of theT -matrix without complex conjugation: the components
of v±(x) were related to theT -matrix above and| sinh0| can be represented in terms of
the T -matrix in the same way as in [19].
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After the set of manipulations identical to those used in [19] we represent the moments
in the form of the following path integral:

Mn = 2 e−c/4

π(l21)n−1

∫ ∞
−∞

dσ dσ ′
∫
ξ(−L)=σ ′;ξ(L)=σ

Dξ e−(ξ(−c)/2) exp

{
− 1

2

∫ c

−c
dx(ξ̇2+ e−ξ )

}
×
[ ∫ c

−c
e−ξ(s) ds

∫ s

−c
eξ(p) dp

]−n+1

(16)

wherec ≡ 2L/l is the relation between the ring circumference 2L and the mean free path
2l.

In general, only the first moment(n = 1) related to the average persistent current can
be explicitly evaluated for arbitraryc [18, 19].

However, in the limit 2L� l we can extract the leading contribution to the path integral
(16) for a large, but limited, number of negative moments satisfying|n| . L/l. To see this
let us use the notationm = −n so that the twofold integral in equation (16) is raised to the
positive powerm+ 1. This gives a possibility of treating the path integral in equation (16)
as the sum of 2(m+1)-fold integrals from the corresponding matrix elements. To illustrate
the structure of the terms we write down explicitly the simplest one:

M0 = 2 e−c/4

π(l21)n−1

∫ c

−c
ds
∫ s

−c
dp

〈
1

∣∣∣∣e−(c−s)Ĥt2 e−(s−p)Ĥ
1

t2
e−(p+c)Ĥ

∣∣∣∣ t〉 (17)

where we introduced the new variablet = 2 e−ξ/2 in terms of which the Hamiltonian operator
Ĥ and the scalar product〈f |g〉 readĤ = − 1

8(t
2∂2
t + t∂t − t2) and 〈f |g〉 = ∫∞0 (dt/t)fg,

correspondingly.
Higher moments will contain similar integrals over variables−c < s1, p1, s2, p2, . . . ,

sm, pm < c. Each integral of this type can be evaluated analytically if we expand powers
of t in terms of the eigenfunctions of the operatorH which are the modified Bessel
functions: HKp(t) = −1/8p2Kp(t). The functions with imaginary indicesp = iν form
a complete orthogonal set suitable for expansion. In this way we find that the leading
contribution to the path integral (16) in the limitL � l corresponds to the configuration
p1 ≈ p2 ≈ · · · ≈ pm = −c; s1 ≈ · · · ≈ sm = c when we can effectively write that[ ∫ c

−c
e−ξ(s) ds

∫ s

−c
eξ(p) dp

]m+1

≈ [(m+ 1)!] 2 e−(m+1)ξ(c) e(m+1)ξ(−c) (18)

for 0 6 m � c/2. For largerm the contribution from omitted terms becomes comparable
with that given by equation (18) due to large combinatoric factors.

The momentsM−m in this approximation are equal to

M−m = 1

m
√
π

e−c/4[(m+ 1)!] 2Γ
(

2m+ 3

2

)
ec(m+1/2)2. (19)

When restoring the asymptotic behaviour of the curvature distribution from these moments
the factorial coefficients can be omitted in view of the conditionm� c/2. This results in
the log–normal curvature distribution

P(lnK) ' (4πc)−1/2 e−(1/4c)[lnK+c]
2

(20)

which is valid in the strongly localized limitc � 1 inside the parametrically large domain
of small curvatures−c2� lnK � −c, wherec = 2L/l.

In conclusion, we have demonstrated explicitly that the statistics of level curvatures in
one-dimensional disordered systems is log–normal inside a parametrically large domain of
curvatures smaller than the typical value. At the same time, interesting issues of explaining
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an unexpected difference in behaviour of the positive moments of the curvature and that
of the eigenfunction correlator, see figure 1, as well as the mentioned asymmetry of the
curvature distribution remain open.
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